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Let E be a normed linear space, F a bounded subset, Y a closed subset of
E. A nonnegative real number ry(F) is called the relative Chebyshev radius
of F with respect to Y if ry(F) is the infimum of all numbers r >0 for which
there exists ayE Y such that F is contained in the closed ball B(y, r) with
center y and radius r. Any point y E Y for which Fe B(y, ry(F)) is called a
relative Chebyshev center of F with respect to Y. We denote the set of all
relative Chebyshev centers of F with respect to Y by Z y(F).

In this paper we investigate several questions concerning characterization
and existence of relative Chebyshev centers, and the continuity of the
Chebyshev center map. In Section 1 we give a formula for the relative
Chebyshev radius of a bounded set F with respect to Y in terms of the
relative radius of F with respect to hyperplanes from the annihilator of Y.
For F totally bounded this formula was obtained in [8 J. Let F be a bounded
set which is contained in the closed ball B(y, r), where r = r(y, F) ==
sup {llx - yll ; x E F}. In Section 2 we are looking for necessary and sufficient
conditions for B(y, r) to be the Chebyshev ball of F. For Hilbert space, a
characterization was given in [5]. However, the necessity part of this charac­
terization requires a property valid only for F compact. We give necessary
and sufficient conditions for both the compact and noncompact case and
deduce several corollaries. In Section 3 we show that every infinite dimen­
sional normed space E has an equivalent norm such that co(E) does not
admit relative centers for all pairs of points in 100 (E). In Section 4 we
investigate the Lipschitz constants of the Chebyshev center map restricted to
certain families of "admissible" pairs of sets, as introduced in [5].
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In Sections 5 and 6, finally, we discuss the upper semicontinuity of the
Chebyshev center map and the proximinality of isomorphic images of prox­
iminal subspaces.

1. A DUALITY THEOREM FOR GLOBAL ApPROXIMATION

Proposition 1.1 generalizes a theorem by Franchetti and Cheney ([ 8],
Theorem 2.2).

1.1. PROPOSITION. For every linear subspace Y of a normed space E and
for every bounded subset F of E, we have

ry(F) = max rj~I(O)(F).
jEyl

Proof For every fEY1, rj-l(o)(F)~ry(F) (since f-1(0)=:IY). If
ry(F) = r(F) then for every fE y 1 we have r(F) = ry(F) ~ rj-l(o)(F) ~ r(F),
hence equality. If ry(F) > r(F), then every x E E with r(x, F) < ry(F) is an
interior point of K = nXEF B(x, ry(F)). We can apply the Hahn-Banach
theorem and extend Y to a hyperplane H = f - 1(0), fEY 1, with
H (j K O= 0, i.e., with rH(F) ~ ry(F).

Theorem 2.2 in [8] assumed F to be totally bounded, and the proof used
finite-dimensional approximants for F.

2. CHARACTERIZATION OF CHEBYSHEV CENTERS

Proposition 2 in [5] states that in Hilbert space, if a closed, bounded, and
convex subset K is contained in a closed ball B(x, r), then the ball is the
Chebyshev ball for K if and only if x E conv(K (j S(x, r)). The proof of the
necessity part assumes that the distance between the sphere S(x, r) =
{y E E; II x - y II = r} and the "haIr' of K disjoint with it is positive and is,
therefore, valid only in the compact case.

2.1. EXAMPLE. In the Hilbert sequence space /2' with the orthonormal
basis (en);::'=1' let K=conv{(1-Ijn)en; n= I,2,... }. The unit ball B(O, 1)
is the Chebyshev ball for K, but K n S(O, 1) = 0 (a common point must be
extremal in K, hence, (1 - Ijn) en for some n).

In the compact case the proposition can be generalized to relative centers
in general normed spaces.

2.2. PROPOSITION. Let Y be a convex subset and K a compact subset of
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the normed space E, Yo E Y, ro= r(yo' K). Then Yo E zy(K) if and only if
Yo E zy(K n S(Yo' ro))'

Proof Without loss of generality, we may assume Yo = 0, ro= 1. Denote
S = SE = S(O, 1), the unit sphere of the space E. Since K is compact,
K n S *- 0. If °E zy(K n S), then 1 ~ ry(K) ~ ry(K n S) ~ 1, hence°E zy(K). If ry(K) = 1 but °E zy(K n S), there are y E Yand b> Osuch
that r=r(y,KnS)<I-b. Let KJ={xEK; Ilx-yll~l-b}. Then
K J n S *- 0 and, by compactness of K J , there is d> °with Ilxll ~ 1 - d for
all x E K J • Let e > °be smaller than min(l, dill yll). For x E K J we have
Ilx-eyll~llxll+eIIyll<l-d+ellyll, while for xEK\K J we have
Ilx - eyll ~ (1- e)llxll + ellx - yll < 1 - be. Thus ey E Y satisfies r(ey, K) ~
max(1 - d + ell yll, 1 - be) < 1 = ry(K), which is impossible. Therefore,°E zy(KnS).

Remark. It suffices that K be "M-compact" in the sense of Panda and
Kapoor [12], i.e., that whenever k n E K and II y - k n 11--+ r(y, K) there be a
convergent subsequence k

ni
--+ k E K.

The analogue for the noncompact case is

2.3. PROPOSITION. Let Y be a convex subset and F a bounded subset of
the normed space E, Yo E Y, r0 = r(yo' F). Then Yo E Z y(F) if and only if
Yo E zy(F\B(yo, t))for some (or all) °~ t < roo

Proof Again assume Yo = 0, ro= 1. If °E zy(F\tB) then, clearly,
1 = r(O, F) = r(O, F\tB) = ry(F\tB) ~ ry(F) = 1, hence, °E zy(F). If
r y(F) = I but °E Z y(F\tB), there are °*- y E Y, d > ° such that
r(y, F\tB) < 1 - d. Let °< e < min(l, (1 - t)lllY II). If x E tB then
Ilx - eyll ~ Ilxll + ell yll = t + ell yll, while if x E F\tB then Ilx - eyll ~
(1 - e)llxll + ellx - yll < 1 - eb, thus r(ey, F) < 1 and °E zy(F).

Proposition 2.3 had been observed by Franchetti (unpublished). From
Proposition 2.2 we deduce the correct version of the Borwein-Keener
statement, in a slightly generalized form

2.4. COROLLARY. If Y is a closed linear subspace and K is a compact
subset of a Hilbert space, Yo E Y and ro= r(yo, K), then Yo = zy(K) if and
only if Yo E conv Py(K n S(Yo' ro)) (where P y is the metric projection onto
Y).

Proof Again we may assume Yo = 0, ro= 1, and we have to show that
0= zy(K) if and only if 0 E conv Py(K n S).

The "only if part" follows immediately from Proposition 2.2 and the fact
that in Hilbert space zy(F) E conv Py(F) [13, Theorem 3.3]. For the "if'
part, let °*- y E Y. If (PyX, y) > 0 for all x E K n S then, by compactness
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and continuity of Py, (P y(K n S), y) ~ e >0 which is impossible since
oE conv Py(K n S). Thus (PyX, y) <: 0 for some x E K n S and, therefore,

r(y, K)2 ~ Ilx - yll2 = Ilx - Pyxl1 2+ IIPyx _ yl12
~ Ilx - Pyxl1 2+ IIPy xl1 2 + II yl12 = 1 + II yl12 > 1 = r(O, K)2.

Since y was any point in Y\ {Of, 0 = zy(K).

The noncompact analogue of Corollary 2.4 is

2.5. COROLLARY. If Y is a closed linear subspace and F is a bounded
subset of a Hilbert space, Yo E Y and ro= r(yo,F), then Yo E zy(F) if and
only if there exists a to < ro such that Yo E cony Py(F\B(yo, t)) for every
to<:t < roo

Proof Again we may assume Yo = 0, ro= 1, and we have to show that
0= zy(F) iff 0 E nto,,;;t< 1 conv Py(F\B(O, t)) for some to < 1. The "only if'
part follows immediately from Proposition 2.3 and the fact that in Hilbert
space Z y(A) E cony Py(A). For the "if' part, let 0 =I=- Y E Y. Let 0 < 1 - to <
II YI12/4, t ~ to' Since 0 E coriy Py(F\tB), there is an x E Py(F\tB) such that
(Pyx,y) < 1 - t. But then

Ilx - yl12 = Ilx - Pyxl1 2+ II PyX _ yl12
> Ilx - P yxl1 2+ IIP yxl1 2+ II yl12 - 2(1 - t)

= IIxl12+ II yl12 - 2(1- t) > t 2 + II yl12 - 2(1 - t) > 1.

It follows that 0 E Z y(F).

Remark. If we assume Y only to be a closed convex set, then the
analogue of Corollary 2.4 need not hold, e.g., in the Euclidean plane let Y be
the unit disk, K = {(2, 2), (2, -2)}. Then zy(K) = (1,0) E cony PyK =
h/2[(I, -1), (1,1)].

Another corollary, in general normed spaces, is the following
generalization of a result of Franchetti and Cheney ([8, Theorem 2.1 a]).

2.6. COROLLARY. Let Y be a convex subset and K be a compact subset of
the normed space E, Yo E Y and ro= r(yo' K). Then Yo E zy(K) if and only if
for every y E Y there are x E K and rp E ext B * such that rp(x - y) ~
rp(x - Yo) ~ roo

Proof Sufficiency is obvious, since in this case, for all y E Y,

sup {liz - yll; Z E K} ~ Ilx - yll ~ rp(x - y) ~ roo
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For necessity, we may assume Yo = 0 E Zy(K), ro= 1, Y E Y. By the
proposition, r(y, K n S) ~ 1, so that for some X oE K n S we have
II y - xoll ~ 1. Similarly, for 2 -ny we find X n E K n S such that
112 -ny - xnll ~ 1. Necessarily, d([2 -ny,y], x n) ~ 1. Let x E K n S be a limit
point of the (xn). Then [0, y] n BO(x, 1) = O. Apply the Hahn-Banach
theorem to get a separating hyperplane 1fI- 1(0), where II ifill = -1fI(X) = 1.

Since W = {(jJ E B *; (jJ(x) = -1 } is an extremal subset of B *,
IfI E conv w* ext W = conv w*(ext B* n W). If (jJ(Y) ~ 0 for every (jJ E ext W,
then {(jJ E W; (jJ(Y) = O} is an extremal subset of Wand contains some
(jJ E ext We ext B *.

Remark. The case of a linear subspace Y was proved in [8] in an
indirect way (using Singer's characterization of ext B(e(K, E)*».

2.7. PROPOSITION (Laurent-Tuan). If Y is a convex subset and K is a
compact subset of the normed space E, Yo E Y, and ro= r(yo, K), then
Yo E Z y(K) if and only if there is qJo E conv w* {(jJ E ext B *; there exists an
x E K such that qJ(x - Yo) = ro} such that (jJo(yo) = maxyEy qJo(Y)·

Proof Sufficiency is immediate, since for every y E Y, qJo(Yo) = qJo(Y)
implies (jJ(Yo) ~ qJ(Y) for some qJ E B* satisfying qJ(x - Yo) = ro for some
x E K, hence, r(y, K) ~ Ilx - yll = qJ(x - y) = (jJ(X - Yo) = roo

For necessity, we may take yo=O, ro= 1. Let W=convW'{qJEextB*;
there exists an x E K such that qJ(x) = I}. If for no qJo E W we have
qJo(Y) <0 for all y E Y then, by w*-compactness of W, there are
Yl'oo"Yn E Y such that max i =l •...• n qJ(Yi) > 0 for all qJ E W. We may assume
Yl""'Yn to be minimal with respect to this property. Let Wi = {qJ E W;
qJ(Y;) <Of, i = 1,... , n. Apply now the following lemma of Klee [10].

2.8. LEMMA. If a compact convex set W in a locally convex space is the
union U7= 1 Wi of n closed convex sets, and if ni*j Wi '1"= ° for every
j= 1,... ,n, then n7~1 Wi '1"= 0.

Proof Induction on n. If proved for n - I, assume n7=1 Wi = O. Strictly
separate the disjoint convex sets Wn and n7:/ Wi by a closed hyperplane H.
For every j = 1,... , n - 1, the convex set nUi<n Wi intersects both Wn and
n7:/ Wi' which lie on opposite sides of H, hence intersects H. We can
apply the induction hypothesis to Wi n H, i = 1,... , n - 1, and arrive at the
contradiction n7:/ Wi n H '1"= O.

Remark. (1) Proposition 2.7 was deduced in [11] from convex analysis
(subdifferential method).

(2) The deduction of Proposition 2.7 from Corollary 2.6 is a
particular case of the "minimax theorem" (cr., e.g., [15 D. We would like to
thank S. Hart from Tel-Aviv University for referring us to this method.
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(3) Assuming Proposition 2.7, Corollary 2.6 is easily deduced by
observing that each {tp E B; tp(x - Yo) = ro}, x E K, is a w*-compact
extremal subset of B *, and that {tp E B *; there exists an x E K such that
tp(x - Yo) = ro} is w*-compact.

(4) Example 2.1 shows that none of the characterizations above is
valid in the noncompact case.

2.9. COROLLARY. If Y is a closed convex subset and K a compact
convex subset of the Hilbert space H, then Z y(K) E Py(K).

Proof We may assume 0 = Z y(K), ry(K) = 1. By Proposition 2.7 there is
Zo E conv {z E ext B(H); there exists an x E K with (x, z) = l}, with
(y, zo) ~ 0 for all y E Y. Since K c B(H), (x, z) = 1 can happen only when
x = z, therefore, Zo E K. Since (y, zo) ~ 0 for all y E Y, 0 = P yZ.

When Y is n-dimensional, Proposition 2.7 yields, by the Caratheodory and
Krein-Milman theorems, tpo = L:7=0 aitpp where tpi E ext B*, tpl'<i - Yo) = ro
for some Xi E K, ai~ 0 and we have L:7=0 ai = 1.

Laurent-Tuan [11 J and Rozema-Smith [13 J studied z y(K) for Y of the
form {y E Xo+ V; l,if(Y) ~ w(l,if) for all l,if E 'P}, where V is a subspace of E,
'P is a w*-compact subset of E*, and w is w*-continuous on 'P. By
Corollary 2.6 if Yo E zy(K) then for every Z E Xo+ V we either have
'i'(z) > w(l,if) for some 'i'E 'P or tp(z)~tp(yo) for some tp E extB* for which
tp(x - Yo) = r(yo' K) for some XoE K. Repeating the argument of
Proposition 2.7, we get Theorem 1.2 of [11 J: if Y is of the form above then
yoEY is in zy(K) iff there is tpoEV~(Jconvw'(jtpEextB*;

tp(x-yo)=r(Yo,K) for some xEK}U{l,if;l,if(Yo)=w('i')}). If dim V=n
then we can take tpO=L:~=laitpi+L:f=lfJi'i'i' ai,fJi~O, L:ai +L:fJi=l,
r ~ 1, s ~ 0, and r +s ~ n + 1.

Moreover, taking such a tpo corresponding to Yo in the relative interior of
Z y(K), it will do for all y E Z y(K) [11].

3. EXISTENCE OF CHEBYSHEV CENTERS

In [3] the following was claimed: if Y, A are subsets of a normed space E
such that every x E A has a nearest y E K and every y E K has a farthest
x E A then zy(A) * 0.

This is clearly false, e.g., by Garkavi's result [9]: for every maximal
subspace Y in a nonreflexive Banach space E there are x E E and an
equivalent renorming of E such that under the new norm Y is proximinal but
Zy(O, x) = 0.
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In a recent paper on M-ideals by Yost [16], we found the following
relevant result:

3.1. EXAMPLE (Yost). Let X be a strictly convex but not uniformly
convex normed space, then ZCo(E)(U, v) = 0 for some u, v E loo(E).

Indeed, if xn'YnESE are such that Ilxn- Ynll > 2e >0 but
t5n== ~ Ilxn+Ynll / 1, define u, v E loo(E) by: u(n) = xn/t5n, vn(n) = -Yn/t5n,
and wmE co(E) by: wm(n) = (u(n) +v(n))/2 for n ~ m, wm(n) = 0 for n >m.
Then

r(wm, [u, v])=max(max Hu(n)-v(n)ll, sup lu(n)l,sup Iv(n)I)=t5;;;I-t 1.
n<m n>m n>m

Hence, rcolE) (u, v) ~ 1. But 1 cannot be attained since, by strict convexity of
E, II w - u II = II w - v II = 1 has the only solution w = (u + v)/2 which, by our
choice, is not in co(E). Observe that co(E) is an M-ideal in loo(E) (in
particular, it is proximinal).

Yost shows that every LI(;i) space and every WCG space (in particular,
every separable normed space) can be equivalently renormed to be strictly
convex but not even locally uniformly convex. He suggests that "there is no
(infinite-dimensional) space for which every equivalent strictly convex norm
is already locally uniformly convex." This is trivially false because of the
existence of nonstrictly convexifiable spaces, e.g., loo(T) for uncountable r
[7, p. 160], so that the right question should be: "Is every infinite dimen­
sional locally uniformly convex space isomorphic to a strictly convex
nonlocally uniformly convex one?" However, for our purpose we can state

3.2. PROPOSITION. Every infinite dimensional normed space (E, 11·11) has
an equivalent norm under which ZCo(E)(X, y) = 0 for some x, Y E loo(E).

Proof Let Eo be any infinite dimensional separable subspace of E, and
let 11·110 be an equivalent strictly convex nonuniformly convex norm on Eo,
with 11·110 < 11·11· Let B I be the closed convex hull of the II· II-sphere S and the
11·llo-sphere So, 11·111' the corresponding (equivalent) norm on E. The points
of the II· III-sphere can be represented by Z = Axo+ (1 - A) x, AE [0, I],
xoESo' xES. If zEBI(O, 1)nBI(2u, 1), uESo' then because of strict
convexity of 11·110 we must have X o= u, i.e., Z = AU + (1 - A) x and,
similarly, 2u-z=,uu+(1-,u)y, "A,,uE[0,1], x,yES. But then
u = «1-A)x + (1-,u)y)/(2 -A -,u) E conv[x,y], hence, 1 = Ilull l =
lIull o < Ilull ~ I-a contradiction, unless A=,u = 1. Therefore, for Xo,Yo E So
we have BI(xo, Ilxo- Yoll/2) nBI(yo, Ilxo - Yoll/2) = {(xo+Yo)/2}. Take
xn'YnE So with Ilxn+Ynlll = Ilxn+Ynllo -t 2, Ilxn- Ynlll = Ilx n - Ynllo > 2e,
and define u, v E loo(E, 11·111) as in Yost's construction.
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4. LIPSCHITZ CONTINUITY OF THE CHEBYSHEV CENTER MAP
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Borwein and Keener [5] studied the Lipschitz constants

p(ffJ=sup{llzAA)-zG(G)II/h(A,G);(A,G)EL~}'where~, i= 1,2,3,
are the following families of pairs of closed convex bounded sets in a fixed
normed space E:,~ = {(A, G);B(zAA), rA(A))nB(zG(G), rdG)) = 0,
J';={(A,G);ZA(A)EG and zdG)EA}, ,~={(A,G);AnG=0} (E is
assumed to have unique self centers, e.g., a reflexive uced Banach space).
They showed that if dim E ~ 2 then ~(1 + 0) :::;p(7";):::; 2 :::;pC~) and
p(J';) = 00, and asked if pC?';) = 2 for all E.

4.1. PROPOSITION. If dim E ~ 3 then p(~) = 00.

Proof Let F be any 2-dimensional subspace of E, x E E\F, Ilxll < 1.
Given any n, there are A, He F convex, closed, and bounded so that
h(A, H) = I and II zA(A) - zH(H)II > n + 1 (since in F p(7;) = 00). Let
G=A +x. Then IlzA(A)-zdG)11 > n while h(A, G) < 2.

Borwein and Keener observed also that if one replaces the relative centers
zAA), zdG) by the absolute centers z(A) = zE(A), z(G) = ZE(G) and the
relative radii rAA), rG(G) by the absolute radii r(A) = rE(A), r(G) = rE(G),
then the corresponding Lipschitz constants p(Y"J (i = 1,2), still satisfy
HI +/5)):::; p(~), p(ff;) = 00. We show now that there is no upper bound
for pP~~).

4.2. EXAMPLE. E is the (2n + 1)-dimensional space l~n +I, P > 1, with the
standard unit vector basis (eJ~:il, e= (1,... ,1), A = conv{L:iEJej;Jc
{I, ...,2n+1},IJI=n}, G=(1+c)e-A. Since A is invariant under the
permutation isometries, we must have z(A) = te for some constant t, and a
simple computation shows that t= (1 + «n + l)/n)I/(P-I))-1 and r(A)=
(n(1 - t) P+ (n + 1) tP)I/P. Clearly, z(G) = (1 +c - t) e and r(G) = r(A). In
order to keep the Chebyshev balls disjoint, it suffices that (1 + c - 2t)
(2n + 1)1IP > 2(n(1- t)P + (n + 1) tP)I/P. For such c, we have

T. ~ (1 + c - 2t)(2n + 1)1/P
pC 1)7 (2nc P+(I+c)P)I/P

Taking P almost 1, t and then c can be made arbitrarily small, and the right­
hand side arbitrarily close to 2n + 1.

To get a space (infinite dimensional) with p(JT;) = 00, take the 12-direct
sum (L:;;"=o ffi l~: +1)2' where Pn are chosen close enough to 1.

Problem. Is p(JT;) ~ dim E the right upper bound?

040/40/40
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Borwein and Keener [5] showed also that if E is Hilbert space then
,u(Y';) = (/5 + 1)/2. Their proof makes use of their Proposition 2, which is
valid only for compact sets. Their theorem concerning ,u(Y';), however,
remains true.

4.3. PROPOSITION. If E is Hilbert space then ,u(Y';) = (/5 + 1)12.

Proof Let F 1 , F 2 be bounded subsets of E. Without loss of generality,
we may assume that F1cB(0,a-e) and F2cB(x,2-a), where Ilxll=2,
0< e < a:::;; I (symmetry), 0= z(F.), x = z(F2). By Corollary 2.5 there is a
z E F2\B(x, 2 - a - e) such that (x - z, x):::;; e. We then have d(z, F1) ~
d(z, B(O, a - e» = /(2 - a - e)2 + 4 - 2e - (a - e) (since (zlllzll)(a - e) is
the best approximation of z in B(O, a - e) and IIzl1 2 ~ (2 - a - e)2 + 4 - 2e).
But the last function attains its minimum at a = 1, from which the
proposition follows.

5. SEMICONTINUITY OF THE CHEBYSHEV CENTER MAP

While the Chebyshev center map F ~ z(F) is known to be locally
uniformly continuous in a certain class of normed spaces containing the
uniformly convex and the Cu(D) spaces [1,4], examples where F ~ z(F) is
not lower semicontinuous were given in [2]. Such is the case in the infinite
dimensional L 1(P) spaces, but it can happen even in 3-dimensional spaces.

A general condition for upper semicontinuity of F ~ z y(F) on the class of
compact subsets is given in [6, 13, 14]: E has property (H) (i.e.,
S:3 x n ~w xES ~ x n ~ x) and Y is boundedly weakly sequentially compact,
or: E is a dual space having property (H*) (analogous, with w* instead of
w), and F is boundedly w*-sequentially compact. No examples are given in
the literature to see the necessity of any of the conditions. The following is
an example where F ~ z(F) is not usc, even on the family of pairs {x, y I.

5.1. EXAMPLE. Consider the 3-dimensional space E~ whose unit ball is
the convex hull of the 18 points: (±I, ±I, ±I), (±lln, ±l, ±(I + lin»,
(0,0, ±(I + 2In».

The norm can be computed to be given by

For every It I :::;; I we have 11(0,0, I + 21n)11 = Win, t, I + I/n)11 = 1, hence,
z({±(O, 0, I +2lnm = {CO, 0, 0)1, z({±(lln, 0, I + Iinm = {CO, t, 0); It\:::;; I},
while 11(lln, 0, I + lin) - (0,0, I + 21n)11 = 11(lln, 0, -lln)11 = lin.
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Now take E = (L:::='= 1 (£) E~)OCJ and consider the center map at
Fo= {e, -e}, where e(n) = (0,0,1 + 2In). Clearly, z(Fo) = 0. Let
Fm= {em' -em}' where em(n) = e(n) for n 01: m, em(m) = (11m, 0,1 + 11m).
Then z(Fm) = {em.t;ltl< I}, where em,tCn) =0 for nol:m, em.t(m) = (O,t, 0),
and h(Fo,Fm) = 11m while h(z(Fo), z(Fm)) = 1.

Example 5.2 shows that the Chebyshev center map need not have a
continuous selection, even in the 3-dimensional case, i.e., one cannot select a
single element qJ(A) E z(A) such that A -+ qJ(A) is continuous.

5.2. EXAMPLE. Let the unit ball of a norm 11·11 in E 3 be given by
conv{(O, ±I,O), (±I,O,±I)} (8 points). Let Gn =l(-I+Iln,Iln,O),
(1-I/n,-I/n,O), (-1,0,1), (1,0, I)}. Fn = {(-I + lin, lin, 1), (1-I/n,
-lin, 1), (-1,0,0), (1,0, O)}. Then h(G n , F)-+ °and h(Fn , F)-+ 0, where
F= {(-I, 0, 0), (1,0,0), (-1,0,1), (1,0, I)}. Moreover, z(Fn ) = (0, 0, 0),
z(Gn) = (0,0, 1) for all n E IN, and z(F) = [(0,0,0), (0, 0, 1)], so that the
mapping A -+ z(A) cannot have a continuous selection in (E3' 11·1/).

6. PROXIMINALITY, EXISTENCE OF CHEBYSHEV CENTERS,
AND ISOMORPHISMS

Clearly, proximinality or admitting Chebyshev centers is an isometric
property which cannot be expected to be invariant under isomorphisms. In
[2 J there is an example of an isomorphic strictly convex renorming of
C[0, 1J which fails to admit Chebyshev centers. Most striking in this
direction is Garkavi's construction mentioned in Section 3. Somewhat more
restrictive is the case of two subspaces F, G of the same space E which are
isomorphic under an automorphism T of E onto itself. Franchetti and
Cheney [8 J asked whether, in the case E = qQ), proximinality of F implies
that of G. Except for the trivial cases when F is reflexive or T an isometry,
every positive result is somewhat surprising, and such is their Theorem 4.8
(F of finite codimension, T a multiplication by an invertible f E qQ)).

6.1. EXAMPLE. In E=c=c(IN*), let F={xEco;x(I)=O}, G=
{xEco; qJ(x)=O} where rp=(I/2 n )::='=.El j =ct. F is proximinal
(PF(x)(I)=O, PF(x)(n)=x(n)-limx for n> 1), but G is not (even in co),
Tx(I)=x(I)-2'(x), Tx(n)=x(n) for n~2 is an isomorphism of c onto
itself carrying F onto G.
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